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Background 

Human memory function can be assayed in real-time by 

electroencephalographic (EEG) recording; however, the 

clinical utility of this method is dependent on the reliable 

determination of functionally and diagnostically relevant 

features. Data-driven machine learning approaches capable 

of modeling non-stationary signal have been explored as a 

way to synthesize large arrays of EEG data. Although 

standard machine learning approaches reduce the data to a 1D 

vector before classification, the EEG record could be more 

precisely characterized by a tensor (e.g., a 3D matrix) 

representing processing stages, spatial locations, and 

frequency bands as individual dimensions. We derive a novel 

tensor-based classification method and test it on EEG data 

collected during memory task performance in healthy normal 

and clinical (schizophrenia) samples.  

Methods 

Schizophrenia (SZ, n=40) and healthy control (HC, n=20) 

subjects completed an EEG Sternberg task. EEG was 

analyzed to extract 5 frequency components (delta, theta, 

alpha, beta, gamma) at 4 processing stages (baseline, 

encoding, retention, retrieval) and 12 scalp sites representing 

central midline, and bi-lateral frontal and temporal regions. 

A tensor-based learning algorithm was applied to the 

resulting 240 features (forming a 5×4×12 tensor) to classify 

correct (-1) vs. incorrect (+1) responses on a trial-by-trial 

basis. In this approach, a linear model is directly constructed 

from the tensor, and hence the model coefficients comprise 

another tensor. The algorithm decomposes the coefficient 

tensor into a summation of three components and identifies 

the sparse patterns of these components from data. Thus, 

coefficients in each component guide the respective selection 

of spectral frequency, temporal (processing stages), and 

spatial (electrode sites) dimensions most related to trial 

performance. Using this approach, the selection of features 

along any dimension takes into account weightings 

represented on the other two dimensions. Separate models 

were constructed for SZ and HC samples for comparison of 

common and disparate feature patterns across the 

dimensions. 

Results 

Task accuracy was significantly lower in SZ (p < .001). In 

both groups, task performance was most dependent on 

encoding and retrieval stage activity, with higher encoding 

uniformly and lower retrieval activity generally associated 

with better task performance across electrode sites. This 

pattern appears most prominently in central alpha activity 

(Figure; blue border). Groups differed in two main ways: (1) 

centroparietal theta, beta, and gamma during encoding and 

retention predicted higher accuracy in HC (Figure; red 

border), and (2) delta activity across stages and electrodes 

(Figure; green border) predicted lower accuracy in SZ.  The 

new tensor-based model outperformed GEE and SVM 

solutions according to AUC values (HC: 55.2%; SZ: 58.6% 

versus the best AUC 53% from GEE and SVM).  
 

 

Discussion 

Tensor-based classification enabled interpretation and 

summary across all dimensions, which was not possible for 

classifiers based on single vectors.   
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